MetaCyc Reaction:

Superclasses: Reactions Classified By Conversion TypeSimple ReactionsChemical ReactionsComposite ReactionsElectron-Transfer-Reactions
Reactions Classified By SubstrateSmall-Molecule Reactions

EC Number:

Enzymes and Genes:

Escherichia coli K-12 substr. MG1655: formate dehydrogenaseInferred from experiment: fdoG, fdoH, fdoI
formate dehydrogenase NInferred from experiment: fdnG, fdnH, fdnI

In Pathway: nitrate reduction III (dissimilatory), formate to dimethyl sulfoxide electron transfer, formate to trimethylamine N-oxide electron transfer

Note that this reaction equation differs from the official Enzyme Commission reaction equation for this EC number, which can be found here .

Transport reaction diagram

Reaction Locations: inner membrane (sensu Gram-negative Bacteria)

The direction shown, i.e. which substrates are on the left and right sides, is in accordance with the Enzyme Commission system.

Most BioCyc compounds have been protonated to a reference pH value of 7.3. Please see the PGDB Concepts Guide for more information.

Mass balance status: Balanced.

Enzyme Commission Primary Name: formate dehydrogenase-N

Enzyme Commission Synonyms: Fdh-N, FdnGHI, nitrate-inducible formate dehydrogenase, formate dehydrogenase N, FDH-N, nitrate inducible Fdn, nitrate inducible formate dehydrogenase

Standard Gibbs Free Energy (ΔrG in kcal/mol): -38.458115Inferred by computational analysis [Latendresse13]

Enzyme Commission Summary:
The enzyme contains molybdopterin-guanine dinucleotides, five [4Fe-4S] clusters and two heme b groups. Formate dehydrogenase-N oxidizes formate in the periplasm, transferring electrons via the menaquinone pool in the cytoplasmic membrane to a dissimilatory nitrate reductase (EC, which transfers electrons to nitrate in the cytoplasm. The system generates proton motive force under anaerobic conditions [Jormakka02a].

Citations: [Enoch75, Jormakka02]

Gene-Reaction Schematic

Gene-Reaction Schematic

Unification Links: Rhea:29063

Relationship Links: BRENDA:EC:, ENZYME:EC:, IUBMB-ExplorEnz:EC:, UniProt:RELATED-TO:O27595, UniProt:RELATED-TO:O59078, UniProt:RELATED-TO:O67146, UniProt:RELATED-TO:O67148, UniProt:RELATED-TO:P06130, UniProt:RELATED-TO:P06131, UniProt:RELATED-TO:P07658, UniProt:RELATED-TO:P0AAJ3, UniProt:RELATED-TO:P0AAJ5, UniProt:RELATED-TO:P0AEK7, UniProt:RELATED-TO:P0AEL0, UniProt:RELATED-TO:P24183, UniProt:RELATED-TO:P27273, UniProt:RELATED-TO:P28179, UniProt:RELATED-TO:P28180, UniProt:RELATED-TO:P28181, UniProt:RELATED-TO:P32176, UniProt:RELATED-TO:P33160, UniProt:RELATED-TO:P35839, UniProt:RELATED-TO:P44450, UniProt:RELATED-TO:Q9PMF2, UniProt:RELATED-TO:Q9PMF3, UniProt:RELATED-TO:Q9PMF4, UniProt:RELATED-TO:Q00498, UniProt:RELATED-TO:Q07103, UniProt:RELATED-TO:Q07511, UniProt:RELATED-TO:Q50743, UniProt:RELATED-TO:Q57619, UniProt:RELATED-TO:Q60314, UniProt:RELATED-TO:Q60316


Enoch75: Enoch HG, Lester RL (1975). "The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli." J Biol Chem 1975;250(17);6693-705. PMID: 1099093

Jormakka02: Jormakka M, Tornroth S, Byrne B, Iwata S (2002). "Molecular basis of proton motive force generation: structure of formate dehydrogenase-N." Science 295(5561);1863-8. PMID: 11884747

Jormakka02a: Jormakka M, Tornroth S, Abramson J, Byrne B, Iwata S (2002). "Purification and crystallization of the respiratory complex formate dehydrogenase-N from Escherichia coli." Acta Crystallogr D Biol Crystallogr 58(Pt 1);160-2. PMID: 11752799

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by Pathway Tools version 19.5 (software by SRI International) on Tue Dec 1, 2015, biocyc11.